The new generation of generative AI(AI) plays a critical role in optimizing the national innovation system in modern society.The reform of generative AI is gradually transforming innovative models and various industries, bringing chances as well as challenges to human life.This paper aims to figure out how generative AI becomes one of the key factors in the national innovation system and analyze the dual-sided impact of its applications.Through analyzing how generative AI facilitates the optimization of national innovation systems in Chinese society, it also addresses the potential risks posed by the technological anxiety and ideological controversies of generative AI.#br#In order to promote the deep optimization of the national innovation system, the new generation of AI is expected to serve as an efficiency catalyst to promote the deep optimization of the national innovation system in three aspects: content production, industrial integration, and industrial transformation.With a legal mindset, it is conducive to reducing the application risks to an acceptable level by examining the economic, social, and legal risks related to the new generation of generative AI, including market monopolies and the labor market impact, data security issues and algorithm abuse as well as the disputes over the patentability of innovative achievements and copyright ownership.Therefore, the opportunity to advance technological innovation capabilities through generative AI should be valued and the potential crises it may lead to should not be underestimated.Currently, some generative AI products face academic entry barriers, regional and national divides, and are even not welcomed by certain regions, companies, and schools.However, direct technology bans cannot solve the fundamental problems.#br#To solve current issues and future risks related to a plethora of generative AI products and applications, this paper adopts the comparative research method.With reference to systems theory to examine the basic framework of the national innovation system, the generative AI industry should be strengthened from the perspectives of industrial development, digital economy, technological innovation, intellectual property protection, and talent support to mitigate the potential risks of generative AI and facilitate the deep optimization of the national innovation system.Considering the top-level design adjustments of the 20th National Congress on the national innovation system construction since 2022, this paper discusses how the next generation of generative AI can help enhance the efficiency of the national innovation system from four aspects: resource coordination and outcome utilization system; algorithm self-regulation and security supervision system; outcome transformation and innovation recognition system; talent cultivation and talent introduction system.Enhancing the coordination of domestic and foreign AI innovation resources contributes to the universalization of ethical standards in generative AI and rapidly corrects the defects of generative AI.Meanwhile, the extensive market application of generative AI technology achievements can promote the digital transformation and intelligent upgrade of comprehensive industries.Developing a security assurance system centered on algorithmic supervision for conciseness shows sustained benefits to the AI technology ecosystem, and utilizing generative AI technology by itself can be seen as a means of regulating and governing its own technical norms and risks, which is conducive to realizing the reflexivity and normativity of generative AI.The improvement of the system for transforming AI technological innovations and the refinement of the standards for recognizing AI technological innovation achievements could be beneficial to evaluate the innovativeness, practicality, and feasibility of technological achievements, which also promotes the sustainable development of AI technological innovation.By improving the guarantee system centered on algorithm regulation and utilizing generative AI from two aspects, the talent team of generative AI could be strengthened with the improvement of the talent training system.On this account, it is necessary to strengthen the self-cultivation and teaching capability of the next generation of generative AI talents, and encourage international talent communication and talent introduction policies for the next generation of generative AI.#br#
Zhang Juan
. The Value Dialectics and Institutional Construction of the New Generation Generative Artificial Intelligence Assisting the Deep Optimization of the National Innovation System[J]. Science & Technology Progress and Policy, 2024
, 41(13)
: 23
-32
.
DOI: 10.6049/kjjbydc.2023080496
[1] 郑永和,丁雨楠,郑一,等.ChatGPT类人工智能催生的多领域变革与挑战(笔谈)[J].天津师范大学学报(社会科学版),2023,50(3):49-63.
[2] 陈永伟.作为GPT的GPT——新一代人工智能的机遇与挑战[J].财经问题研究,2023,51(6):41-58.
[3] 中国信息通信研究院[EB/OL].[2023-07-05].http://www.caict.ac.cn/sytj/202209/t20220913_408835.htm?eqid=8f53942900066d7b00000002648a956a.
[4] 李勇坚.ChatGPT与经济增长:影响机制与政策框架[J].疆师范大学学报(哲学社会科学版),2024,45(3):86-95,1.
[5] 张洪雷.生成式人工智能参与数字政府建设的技术跃迁、目标导向与可行路径[J].南昌大学学报(人文社会科学版),2023,54(4):100-109.
[6] 中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006-2020)[EB/OL].(2005-12-29)[2023-09-18].http:/www,gov.cn/jrzg/2006-02/09/content_183787_7.htm.
[7] 刘小春,李婵.人工智能对国家创新体系建设:促进作用、负效应及规避[J].科学管理研究,2020,38(2):29-34.
[8] 王晓丽,严驰.生成式AI大规模的风险问题与规制路径:以GPT-4为例[J/OL].北京航空航天大学学报(社会科学版).https://doi.org/10.13766/j.bhsk.1008-2204.2023.0535.
[9] 王洋,闫海.生成式人工智能的风险迭代与规制革新——以ChatGPT为例[J].理论月刊,2023,45(6):14-24.
[10] 詹姆斯·麦肯锡.预计2055年自动化将取代全球约一半的有薪工作[EB/OL].(2017-01-13).http://www.xinhuanet.com/world/2017-01/13/c_1120306421.htm.
[11] 刘霜,张潇月.生成式人工智能数据风险的法律保护与规制研究——以ChatGPT潜在数据风险为例[J].贵州大学学报(社会科学版),2023,41(5):87-97.
[12] 郑智航,徐昭曦.大数据时代算法歧视的法律规制与司法审查——以美国法律实践为例[J].比较法研究,2019,33(4):111-122.
[13] 冯涛,董嘉昌,李佳霖.ChatGPT等生成式人工智能对我国经济高质量发展的双重影响及其应对[J].陕西师范大学学报(哲学社会科学版),2023,52(4):44-54.
[14] 王延川,赵靖.生成式人工智能诱发意识形态风险的逻辑机理及其应对策略[J].河南师范大学学报(哲学社会科学版),2023,50(4):1-7.
[15] 宋伟,刘子荷.论算法黑箱的规制——基于算法解释视角[J].南海法学,2023,7(4):114-124.
[16] 柏拉图.理想国[M].顾寿观,译.长沙:岳麓书社,2010.
[17] FOUCAULT M, FAUBION J D.Aesthetics, method, and epistemology: essential works of foucault, 1954-1984, volume II[M].New York: New Press, 1997.
[18] 张凌寒.算法权力的兴起、异化及法律规制[J].法商研究,2019,36(4):63-75.
[19] 郑世林,姚守宇,王春峰.ChatGPT新一代人工智能技术发展的经济和社会影响[J].产业经济评论,2023,11(3):5-21.
[20] 〖JP+1〗邓建鹏,朱怿成.ChatGPT模型的法律风险及应对之策[J].新疆师范大学学报(哲学社会科学版),2023,44(5):91-101,2.
[21] 王迁.ChatGPT生成的内容受著作权法保护吗[J].探索与争鸣,2023,38(3):17-20.
[22] 何树全.试论我国国家创新体系的框架、问题与思路[J].中国科技论坛,2005,21(3):64-68.
[23] 陈劲,李飞.基于生态系统理论的我国国家技术创新体系构建与评估分析[J].自然辩证法通讯,2011,33(1):61-66,123-124,127.
[24] 费艳颖,凌莉.美国国家创新生态系统构建特征及对我国的启示[J].科学管理研究,2019,37(2):161-165.
[25] 钟荣丙.国家创新体系的系统构成及建设重心[J].系统科学学报,2008,17(3):59-64.
[26] BECK U.The politics of risk society[M].Cambridge: Polity Press, 1998.
[27] 许源源,陈智.新一代人工智能技术社会化应用的脆弱性风险及其韧性治理研究——以ChatGPT为例[J].电子政务,2023,20(9):39-49.
[28] 王向楠,吴婷.互联网韧性监管动态及借鉴意义——以金融业为例[J].电子政务,2020,17(1):51-63.
[29] 何哲,曾润喜,秦维,等.ChatGPT等新一代人工智能技术的社会影响及其治理[J].电子政务,2023,20(4):2-24.
[30] 苏令银.透视人工智能背后的“算法歧视”[N].中国社会科学报,2017-10-10(5).
[31] 中国经济网.外媒:人工智能专利申请数,中国比美“多近80%”[EB/OL].(2023-10-27)[2023-11-08].https://baijiahao.baidu.com/s?id=1780870572712081379&wfr=spider&for=pc.
[32] 弗朗索瓦·利奥塔.后现代状况[M].岛子,译.长沙:湖南美术出版社,1996.
[33] 中华人民共和国中央人民政府.国务院新闻办就“深入实施创新驱动发展战略 加快建设科技强国”举行发布会[EB/OL].(2023-02-24)[2024-05-23].https://www.gov.cn/xinwen/2023-02/24/content_5743191.htm.