The digital-intelligent transformation of manufacturing enterprises is an inevitable choice to realize the deep integration of the digital economy and the real economy,and to promote the high-quality and sustainable development of enterprises. It is also an important starting point to accelerate the development of new quality productive forces. With the deep integration and development of artificial intelligence,big data and other technologies,the digital and intellectual transformation and upgrading represented by digitalization and intelligence provides a new power source for the scientific and technological progress and innovative development of manufacturing enterprises,which has become the core engine to boost the total factor productivity of enterprises. Therefore,how to seize the opportunity of the era of digital intelligence,how to enable manufacturing enterprises to comprehensively reshape,transform and upgrade,and how to promote the improvement of total factor productivity of manufacturing enterprises have become a hot topic in academic and practical circles.
This paper takes China's A-share listed manufacturing companies from 2015 to 2022 as the research sample,and uses a two-way fixed effect model to empirically analyze the impact and mechanism of digital-intelligent transformation on the total factor productivity of manufacturing enterprises. From the perspective of combining digitalization and intellectual,this paper explores the role of digital-intelligent transformation in improving the total factor productivity of enterprises. At the same time,it clarifies the intermediary role of the transformation of resource allocation efficiency,the innovation capability into log-intelligence,and the improvement of total factor productivity of manufacturing enterprises. At last,it analyzes the moderating effect of external financing constraints and environmental competitiveness on the two,which provides a new perspective for understanding the improvement of total factor productivity under the digital-intelligent transformation.
The results show that digital-intelligent transformation has a significant impact on the improvement of total factor productivity of manufacturing enterprises. The mechanism test finds that digital-intelligent transformation helps to promote the total factor productivity of manufacturing enterprises by improving the efficiency of resource allocation and innovation ability. Financial constraints negatively regulate the relationship between the digital-intelligent transformation and the total factor productivity of manufacturing enterprises,while environmental competitiveness positively moderates the relationship between them. The results of heterogeneity analysis show that the improvement of TFP by digital-intelligent transformation is more significant in large enterprises,state-owned enterprises and enterprises in the central region. Further research finds that digital-intelligent transformation can significantly promote manufacturing enterprises to accelerate the development of new quality productivity by improving total factor productivity.
This paper provides empirical evidence and policy implications for the digital-intelligent transformation of manufacturing enterprises to boost the high-quality development of manufacturing enterprises and accelerate the development of new quality productive forces. The government should issue relevant policies and regulations to promote enterprises' digital-intelligent transformation,and reduce their transformation costs and risks by means of tax incentives,financial subsidies and financing support. According to the needs and characteristics of small and medium-sized enterprises,the customized digital-intelligence solutions should be provided for them,so that they can make better use of digital and intellectual technology to improve the responsiveness of supply chain and to cope with the rapid changes of the market and the fluctuation of customer demand. Manufacturing enterprises should give full play to the enabling role of data elements,actively use the digital and intellectual technologies to promote the transformation and the remodeling of manufacturing enterprises,and effectively play the positive role of resource allocation and innovation ability in improving total factor productivity. While it is essential to fully leverage the regulatory role of financing constraints and environmental competition,explore various financing methods such as equity financing,debt financing,government subsidies,and venture capital to reduce the impact of financing constraints on the intelligent transformation. The management should fully recognize the uncertainty of the external macro environment,and maintain the sensitivity and strategic insight to the external environment,so as to minimize the impact of the uncertainty of the external environment and ensure the stable development of the enterprises.
[1] 欧阳日辉.数字经济的理论演进、内涵特征和发展规律[J].广东社会科学,2023,40(1):25-35.
[2] 刘伟.科学认识与切实发展新质生产力[J].经济研究,2024,59(3):4-11.
[3] 张志学,华中生,谢小云.数智时代人机协同的研究现状与未来方向[J].管理工程学报,2024,38(1):1-13.
[4] 陈晓东,杨晓霞.数字经济发展对产业结构升级的影响——基于灰关联熵与耗散结构理论的研究[J].改革,2021,34(3):26-39.
[5] 郭凯明.人工智能发展、产业结构转型升级与劳动收入份额变动[J].管理世界,2019,35(7):60-77.
[6] 李欢,李丹,王丹.客户效应与上市公司债务融资能力——来自我国供应链客户关系的证据[J].金融研究,2018,61(6):138-154.
[7] 简泽,张涛,伏玉林.进口自由化、竞争与本土企业的全要素生产率——基于中国加入WTO的一个自然实验[J].经济研究,2014,49(8):120-132.
[8] 张传洋,郭宇,庞宇飞,等.数智化医疗信息利用与服务模式框架构建[J].图书情报工作,2023,67(13):49-58.
[9] XU J. The connotation characteristics,realistic challenges and implementation path of digital intelligent transformation in manufacturing industry[J]. Industrial Engineering and Innovation Management,2024,7(1): 166-175.
[10] YONG S. A case study of intelligent manufacturing transformation framework for manufacturing enterprises[J]. Financial Engineering and Risk Management,2023,6(1): 15-19.
[11] 胡德龙,石满珍.数字经济对企业全要素生产率的影响研究[J].当代财经,2023,44(12):17-29.
[12] 沈坤荣,乔刚,林剑威.智能制造政策与中国企业高质量发展[J].数量经济技术经济研究,2024,41(2):5-25.
[13] ZHANG G,SHI Y,HUANG N. Government subsidies,green innovation,and firm total factor productivity of listed artificial intelligence firms in China[J]. Sustainability,2024,16(8): 2740-2760.
[14] 任胜钢,郑晶晶,刘东华,等.排污权交易机制是否提高了企业全要素生产率——来自中国上市公司的证据[J].中国工业经济,2019,37(5):5-23.
[15] CHENG Y,ZHOU X,LI Y. The effect of digital transformation on real economy enterprises' total factor productivity[J]. International Review of Economics & Finance,2023,85(3):488-501.
[16] 李金城,王林辉.工业智能化会引发新索洛悖论吗——来自城市层面的经验证据[J].东南大学学报(哲学社会科学版),2023,25(6):66-76.
[17] HUANG R,SHEN Z,YAO X. How does industrial intelligence affect total-factor energy productivity? evidence from China's manufacturing industry[J]. Computers & Industrial Engineering,2024,188(2): 821-830.
[18] 李逸飞,苏盖美,牛芮,等.智能化与制造企业创新[J].经济与管理研究,2023,44(8):3-16.
[19] PACK H. Endogenous growth theory: intellectual appeal and empirical shortcomings[J]. Journal of Economic Perspectives,1994,8(1): 55-72.
[20] 戴双兴.数据要素:主要特征、推动效应及发展路径[J].马克思主义与现实,2020,31(6):171-177.
[21] 杜传忠,疏爽.人工智能与经济高质量发展:机制、成效与政策取向[J].社会科学战线,2023,46(12):78-87.
[22] ISAKSSON A. Determinants of total factor productivity: a literature review[R].Vienna:United Nations Industrial Development Organisation, 2007.
[23] 沈坤荣,闫佳敏.数字技术与企业全要素生产率:影响效应与作用机制[J].财经论丛,2024,40(12):3-15.
[24] 张任之.数字技术与供应链效率:理论机制与经验证据[J].经济与管理研究,2022,43(5):60-76.
[25] 胡洁,韩一鸣,钟咏.企业数字化转型如何影响企业ESG表现——来自中国上市公司的证据[J].产业经济评论,2023,11(1):105-123.
[26] 李凤羽,杨墨竹.经济政策不确定性会抑制企业投资吗——基于中国经济政策不确定指数的实证研究[J].金融研究,2015,58(4):115-129.
[27] 肖曙光,彭文浩,黄晓凤.当前制造企业的融资约束是过度抑或不足——基于高质量发展要求的审视与评判[J].南开管理评论,2020,23(2):85-97.
[28] 王超,余典范,龙睿.经济政策不确定性与企业数字化——垫脚石还是绊脚石[J].经济管理,2023,45(6):79-100.
[29] 赵树宽,范雪媛,王泷,等.企业数字化转型与全要素生产率——基于创新绩效的中介效应[J].科技管理研究,2022,42(17):130-141.
[30] 温素彬,张金泉,焦然.智能制造、市场化程度与企业运营效率——基于A股制造业上市公司年报的文本分析[J].会计研究,2022,43(11):102-117.
[31] 赵宸宇,王文春,李雪松.数字化转型如何影响企业全要素生产率[J].财贸经济,2021,42(7):114-129.
[32] 顾雷雷,郭建鸾,王鸿宇.企业社会责任、融资约束与企业金融化[J].金融研究,2020,63(2):109-127.
[33] PERESS J. Product market competition,insider trading,and stock market efficiency[J]. The Journal of Finance,2010,65(1):1-43.
[34] 赵文,张芳汀.数字经济的城乡收入分配效应研究[J].山东财经大学学报,2024,36(5):88-103.
[35] 连玉君,廖俊平.如何检验分组回归后的组间系数差异[J].郑州航空工业管理学院学报,2017,35(6):97-109.
[36] 王宏鸣,孙鹏博,郭慧芳.数字金融如何赋能企业数字化转型——来自中国上市公司的经验证据[J].财经论丛,2022,38(10):3-13.
[37] 宋冬林,丁文龙.以新质生产力为抓手实现东北振兴新突破[J].学术交流,2023,39(12):105-122.
[38] 宋佳,张金昌,潘艺.ESG发展对企业新质生产力影响的研究——来自中国A股上市企业的经验证据[J].当代经济管理,2024,46(6):1-11.