数字创新生态系统

时空双维下数字创新生态系统对区域创新能力的激发与影响研究——基于省域面板数据的动态QCA分析

  • 荆玲玲 ,
  • 黄慧丽
展开
  • (哈尔滨师范大学 经济与管理学院,黑龙江 哈尔滨 150025)
荆玲玲(1978—),女,辽宁东港人,博士,哈尔滨师范大学经济与管理学院副教授、硕士生导师,研究方向为公共政策分析、社会治理创新等;黄慧丽(1995—),女,山东泰安人,哈尔滨师范大学经济与管理学院硕士研究生,研究方向为数字治理。

收稿日期: 2023-05-20

  修回日期: 2023-07-07

  网络出版日期: 2024-08-26

The Stimulation and Impact of Digital Innovation Ecosystem on Regional Innovation Capability in Two Dimensions of Time and Space: A Dynamic QCA Analysis Based on Provincial Panel Data

  • Jing Lingling ,
  • Huang Huili
Expand
  • (School of Economics and Management, Harbin Normal University, Harbin 150025, China)

Received date: 2023-05-20

  Revised date: 2023-07-07

  Online published: 2024-08-26

摘要

区域创新能力是深入实施国家创新驱动发展战略的基础要素,识别区域创新能力影响因子、挖掘区域创新能力联动机制是加速提升区域创新能力的关键。运用动态QCA分析方法,构建“数字创新主体—数字创新平台—数字创新生态环境”分析框架,从时空双维视角综合分析2017—2021年我国内地31个省份面板数据,探索驱动区域创新能力提升的组态路径。研究发现:政府、企业、中介机构和数字治理环境在提升区域创新能力中发挥重要核心作用。其中,高水平区域创新能力组态有4条路径,可归纳为“创新主体+创新平台”驱动型、“创新主体+创新平台+创新环境”驱动型、“创新环境”驱动型3种模式;低水平区域创新能力组态路径有8条,可归纳为“创新主体+创新环境”限制型、“创新环境”限制型、“创新主体+创新平台”限制型3种模式;在时间维度上,4条高水平组态路径均在2020年呈现一致性下降趋势;在空间维度上,区域创新能力呈现出明显的东西部发展不平衡现象。

本文引用格式

荆玲玲 , 黄慧丽 . 时空双维下数字创新生态系统对区域创新能力的激发与影响研究——基于省域面板数据的动态QCA分析[J]. 科技进步与对策, 2024 , 41(16) : 13 -23 . DOI: 10.6049/kjjbydc.YX202305136

Abstract

Regional innovation capability is a fundamental element for the in-depth implementation of the national innovation-driven development strategy. Identifying the influencing elements of regional innovation capability and discovering the linkage mechanism of regional innovation capability is the key to accelerating the enhancement of regional innovation capability. With the extensive and in-depth promotion of digital technology, digital technology and regional innovation present a high degree of coupling. However, the current research on digital innovation ecosystems is still in the development stage, especially on the relationship between the coupling of digital innovation ecosystem elements and regional innovation capacity there are still some research gaps. Therefore, it is necessary to further explore the connection between the two. Are there any necessary conditions between cause and effect? Are there any combinations of "different cause and effect" ? What is the impact of these combinations on the enhancement of regional innovation capability? Are there any laws of time and space? This will further open the "black box" of the operating mechanism of digital innovation ecosystem elements and regional innovation capabilities.#br#Most of the existing studies have only focused on the "net benefit" of a single element of the innovation ecosystem on regional innovation capabilities, ignoring the impact of the linkage combination of elements. Although the traditional QCA analysis method has improved the problem of multi-factor linkage combination, it is limited by the static and unsaturated theoretical construction. Most of the multi-factor linkage analysis uses static cross-sectional data. The problem of "time blind zone" cannot effectively examine the influence of time and space on the linkage combination of multiple factors. Thus, this study takes the regional innovation of 31 provinces as the research objects, uses the dynamic QCA analysis method to build the analysis framework of "digital innovation subject-digital innovation platform-digital innovation ecological environment"; it further analyzes the provincial panel data of 31 provinces and cities from 2017 to 2021 from the two-dimensional perspective of time and space, and explores the configuration path to drive regional innovation capabilities.#br#The research finds that the government, enterprises, intermediaries and digital governance environment play vital roles in enhancing regional innovation capabilities. The necessity of the variables including "digital governance environment" and "digital financial inclusion environment" exhibits a clear time effect. There are four paths for the configuration of high-level regional innovation capabilities, which can be summarized into three modes: "innovation subject + innovation platform" driven mode, "innovation subject + innovation platform + innovation environment" driven mode, and "innovation environment" driven mode. There are eight paths in the configuration of low-level regional innovation capabilities, which can be summarized into three modes: "innovation subject + innovation environment" restriction mode, "innovation environment" restriction mode, and "innovation subject + innovation platform" restriction mode. In the time dimension, the four configurations at high levels all showed a consistent downward trend in 2020. In the spatial dimension, the level of regional innovation capabilities presents an obvious unbalanced development between the east and the west. It is suggested that localities should choose appropriate digital innovation ecosystems according to their local conditions to cultivate new regional innovation power and promote the new development of digital China.#br#This study applies the dynamic QCA research method to examine the factors influencing regional innovation capability, analyzes the relationship between digital innovation ecosystem elements and regional innovation capability, makes up for the time blind zone in previous QCA research, and explores typical cases of multiple combinations of paths from the spatial and temporal dimensions, providing theoretical references and inspirations for the development of regional innovation capacity. It also discusses typical cases of multiple combinations of paths from both spatial and temporal dimensions, which provides theoretical reference and enlightenment for the development of regional innovation capability. Future research on regional innovation capability can be explored from key cities and high-tech industries, and makes empirical analysis of the technological innovation process of national key facilities.#br#

参考文献

[1] 新华社. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要 [EB/OL]. (2021-03-13)[2023-05-15]. https://www.gov.cn/xinwen/2021-03/13/content_5592681.htm.
[2] 曹玉娟. 数字化驱动下区域科技创新的框架变化与范式重构[J]. 学术论坛, 2019, 42(1):110-116.
[3] 胡宁宁, 侯冠宇. 区域创新生态系统如何驱动高技术产业创新绩效——基于30个省份案例的NCA与fsQCA分析[J]. 科技进步与对策, 2023, 40(10):100-109.
[4] 戎珂, 柳卸林, 魏江, 等. 数字经济时代创新生态系统研究[J]. 管理工程学报, 2023,37(6):1-7.
[5] ADNER R. Match your innovation strategy to your innovation ecosystem[J]. Harvard BusinessReview, 2006, 84(4):98-107.
[6] ADNER R, KAPOOR R. Value creation in innovation ecosystems: how the structure of technological interdependence affects firm perfor-mance in new technology generations[J]. Strategic Management Journal, 2010, 31(3):306-333.
[7] 石翠仙. 基于CiteSpace的科技创新数字生态系统可视化研究[J]. 科技创新与应用, 2023, 13(2):20-24,31.
[8] 林艳, 卢俊尧. 什么样的数字创新生态系统能提高区域创新绩效——基于NCA与QCA的研究[J]. 科技进步与对策, 2022, 39(24):19-28.
[9] BELIAEVA T, FERASSO M, KRAUS S, et al. Dynamics of digital entrepreneurship and the innovation ecosystem:a multilevel perspective[J].Entrepreneurial Behaviour & Research, 2019, 26(2):266-284.
[10] CHAE B. A General framework for studying the evolution of the digital innovation ecosystem: the case of big data[J]. International Journal of Information Management, 2019, 45:83-94.
[11] 布和础鲁, 陈玲. 数字创新生态系统:概念、结构及创新机制[J]. 中国科技论坛, 2022,38(9):54-62.
[12] BOB W, MADIS T, S. P K, et al. A multi-level perspective on innovation ecosystems for path-breaking innovation[J]. Technological Forecasting and Social Change, 2018, 136:103-113.
[13] DEDEHAYIR O, MKINEN S J, ORTT J R. Roles during innovation ecosystem genesis:a literature review[J]. Technological Forecasting & Social Change, 2016, 136:18-29.
[14] 闫俊周, 姬婉莹, 熊壮. 数字创新研究综述与展望[J]. 科研管理, 2021, 42(4):11-20.
[15] SUSENO Y, LAURELL C, SICK N. Assessing value creation in digital innovation ecosystems:a social media analytics approach[J]. Strategic Information Systems, 2018, 27(4):335-349.
[16] 哈梅芳, 王小琴, 李建平. 政府科技支出如何作用于区域创新能力——区域创新中政府与企业、市场关系的思考[J]. 技术经济, 2023, 42(2):11-19.
[17] 魏巍, 史建军, 张丽. 政府补助对区域创新绩效的影响——以2009—2020年31省份的面板数据样本分析为例[J]. 中国高校科技, 2022,36(8):63-67.
[18] 齐晓丽, 郭沛珍, 解威, 等. 政府支持对区域创新绩效的影响:综述及展望[J]. 华东经济管理, 2020, 34(3):44-52.
[19] 杜伟岸, 张宇浩. 知识产权环境与区域创新——金融发展的调节作用[J]. 科技管理研究, 2022, 42(16):167-175.
[20] XU J, HOU Q, NIU C, et al. Process optimization of the University-Industry-Research collaborative innovation from the perspective of knowledge management[J]. Cognitive Systems Research, 2018, 52:995-1003.
[21] 韩先锋, 宋文飞, 李勃昕. 互联网能成为中国区域创新效率提升的新动能吗[J]. 中国工业经济, 2019,37(7):119-136.
[22] VENIAMINOVNA T I,ZELINSKAYA A B, BOGOMOLOVA L L.The improvement of the business system of the northern region of Russia on the basis of innovative infrastructure development[J].Management,2018,8(3):428-433.
[23] 贺灵, 单汨源, 邱建华. 创新网络要素及其协同对科技创新绩效的影响研究[J]. 管理评论, 2012, 24(8):58-68.
[24] 李晓娣, 饶美仙. 区域数字创新生态系统发展路径研究——基于fsQCA的组态分析[J]. 管理工程学报,2023,37(6):20-31.
[25] 王启凤, 钟坚. 金融发展、FDI溢出与区域创新绩效[J]. 科学决策, 2021,28(9):13-24.
[26] 刘鹏飞, 韩晓琳, 刘燕. 营商环境对区域创新能力的影响研究——作用机制与实证检验[J]. 山东财经大学学报, 2023, 35(1):27-38,85.
[27] 刘新智, 黎佩雨. 营商环境优化与区域创新发展的耦合协调研究——基于长江经济带的实证分析[J]. 西南大学学报(自然科学版), 2022, 44(6):99-114.
[28] 蒙克, 魏必. 反思QCA方法的“时间盲区”:为公共管理研究找回“时间”[J]. 中国行政管理, 2023,39(1):96-104.
[29] 张放. 影响地方政府信息公开的因素——基于省域面板数据的动态QCA分析[J]. 情报杂志, 2023, 42(1):133-141,207.
[30] GARCIA-CASTRO R, ARIO M A. A general approach to panel data set-theoretic research[J]. Journal of Advances in Management Sciences & Information System, 2016,1(1):63-76.
[31] SCHNEIDER C Q, WAGEMANN C. Set-theoretic methods for the social sciences: a guide to qualitative comparative analysis[M].America:Cambridge University Press, 2012.
[32] 谭海波, 范梓腾, 杜运周. 技术管理能力、注意力分配与地方政府网站建设——一项基于TOE框架的组态分析[J]. 管理世界, 2019, 35(9):81-94.
[33] 温雅, 郭雯华. 数字普惠金融、区域创新能力与产业高质量发展研究[J]. 产业创新研究, 2022, 6(23):30-32.
[34] 陈清华, 王艳, 贺静宜. 数字普惠金融、企业技术创新与经济增长质量[J]. 当代金融研究, 2022, 5(1):38-49.
文章导航

/