新质生产力专栏

新质生产力发展水平动态演进、影响因素及提升路径

  • 刘源 ,
  • 段丁允 ,
  • 冯宗宪 ,
  • 张军
展开
  • (西安交通大学 经济与金融学院,陕西 西安 710061)
刘源(1993—),男,陕西宝鸡人,西安交通大学经济与金融学院博士研究生,研究方向为区域经济与国别贸易;段丁允(1996—),女,陕西汉中人,西安交通大学经济与金融学院博士研究生,研究方向为数字经济与贸易;冯宗宪(1954—),男,浙江宁波人,博士,西安交通大学经济与金融学院教授、博士生导师,研究方向为区域经济与国别贸易;张军(1982—),男,陕西西安人,博士,西安交通大学经济与金融学院博士后,研究方向为中国开放型经济发展。

收稿日期: 2024-07-12

  修回日期: 2024-09-27

  网络出版日期: 2025-06-25

基金资助

国家社会科学基金重点资助项目(19AJY001);陕西省重大现实问题研究项目(2020ZDWT19);陕西省商务厅资助项目(ZMW2024001)

Analysis on the Dynamic Evolution, Influencing Factors and Improvement Paths of the Development Level of New Quality Productive Forces

  • Liu Yuan ,
  • Duan Dingyun ,
  • Feng Zongxian ,
  • Zhang Jun
Expand
  • (School of Economics and Finance, Xi'an Jiaotong University, Xi'an 710061, China)

Received date: 2024-07-12

  Revised date: 2024-09-27

  Online published: 2025-06-25

摘要

基于2011—2022年中国内地30个省份数据,构建新质生产力指标体系并使用熵值法测度各省市以及八大综合经济区新质生产力水平,分析其动态演进趋势以及地区差异,识别新质生产力关键影响因素、逻辑关系及作用路径,并通过障碍度计算主要发展障碍因子,提出区域新质生产力提升路径。结果显示:①生产力发展水平高的地区包括广东、北京、江苏、浙江以及山东,按区域划分,东部沿海地区新质生产力发展水平最高;②各区域新质生产力水平呈上升态势但存在较大差异,高水平地区对低水平地区存在正向空间溢出效应;③技术合作流动、未来产业布局、数字经济发展和科技创新为影响地区新质生产力发展的主要障碍因子。研究丰富了新质生产力理论分析框架,为区域因地制宜发展新质生产力提供参考借鉴。

本文引用格式

刘源 , 段丁允 , 冯宗宪 , 张军 . 新质生产力发展水平动态演进、影响因素及提升路径[J]. 科技进步与对策, 2025 , 42(12) : 1 -13 . DOI: 10.6049/kjjbydc.Q202407068B

Abstract

The intensification of anti-globalization and protectionism has led the world into a new period of turbulent transformation. At this stage, new quality productive forces is a key factor for China's high-quality development. New quality productive forces is characterized by high technology, efficiency, and quality, fundamentally transforming productivity through technology, resource allocation, and industrial transformation. Regional disparities exist in China in terms of economy and industry due to varying development conditions, necessitating tailored development strategies as a primary governmental task. It is of significant theoretical and practical importance to analyze the evolution and disparities in new quality productive forces across regions, study influencing factors, identify obstacles, and explore enhancement paths for driving high-quality development so as to promote industrial upgrading and transformation, and lead global economic development.
A new quality productive forces development level index system is constructed based on data from 30 Chinese provinces between 2011 and 2022. The entropy method is used to measure the current state of new quality productive forces development at the national level, in each province, and within the 8 major economic zones. Markov chains and Dagum's Gini coefficient are employed to analyze the dynamic trends and regional development disparities. The DEMATEL-ISM model is utilized to conduct a structural analysis of the influencing factors of new quality productive forces, identifying intrinsic key factors and the logical relationships and pathways between these factors. Main obstacles hindering the development of new quality productive forces are identified through obstacle degree calculations, followed by targeted path analysis for enhancing new quality productive forces in each region, integrating all analytical indicators.
The results show that (1) in terms of the development of new quality productive forces, China has experienced a consistent upward trajectory from 2011 to 2022. Provinces with high development levels include Guangdong, Beijing, Jiangsu, Zhejiang, and Shandong. When divided by region, the overall level of new quality productive forces is highest in the eastern coastal regions. (2) According to Markov chain and Dagum analysis, significant differences exist in the levels of new quality productive forces development across various regions in China. These differences primarily stem from disparities among the 8 major economic zones. The largest regional disparities are between the northwest region and the eastern coastal, southern coastal, and northern coastal regions, with the lowest disparities between the middle reaches of the Yellow River and the middle reaches of the Yangtze River. Within various regions, the southern coastal areas exhibit the greatest disparities, while the eastern coastal areas show lower and more balanced differences. Additionally, there are spatial spillover effects, where regions with high development levels can drive development in regions with lower levels without hindering the development of higher-level regions. (3) Utilizing the DEMATEL-ISM model and obstacle degree analysis, the study reveals that within the 15 primary indicators of new quality productive forces, 8 indicators are identified as root factors, which include aspects related to the human capital structure, while 7 indicators are classified as outcome factors, encompassing elements such as human capital investment. Root factors affecting the structure include levels of technological cooperation flow, development of emerging industries, and future industrial layout. Intermediate influencing factors include human capital investment, telecommunications infrastructure, and human capital structure, among 7 indicators. Surface influencing factors include human capital assurance, transportation infrastructure, and five other indicators. The main obstacles in most regions are inadequate development in technological cooperation flow, future industrial layout, structure of the digital economy, and level of technological innovation. (4)Through path analysis, the study identifies four strategic development paths to bolster the new quality productive forces. The first path is dedicated to surmounting core barriers and igniting the catalyst for their advancement. The second path is geared towards navigating intermediate obstacles and establishing a systematic framework for growth. The third path underscores the importance of regional collaboration to amplify joint development initiatives. The last path concentrates on the pivotal role of core leadership in fostering balanced development of new quality productive forces.

参考文献

[1] 赵峰, 季雷. 新质生产力的科学内涵、构成要素和制度保障机制[J].学习与探索, 2024, 46(1): 92-101, 175.
[2] 周文, 许凌云. 论新质生产力:内涵特征与重要着力点[J].改革, 2023, 36(10): 1-13.
[3] 徐政, 郑霖豪, 程梦瑶. 新质生产力赋能高质量发展的内在逻辑与实践构想[J].当代经济研究, 2023, 34(11): 51-58.
[4] 石建勋, 徐玲. 加快形成新质生产力的重大战略意义及实现路径研究[J].财经问题研究, 2024, 46(1): 3-12.
[5] 袁野,曹倩,尹西明,等.创新联合体赋能新质生产力的理论机制与实践路径研究 [J].科技进步与对策, 2024, 41(20): 32-44.
[6] 沈坤荣, 金童谣, 赵倩. 以新质生产力赋能高质量发展[J].南京社会科学, 2024, 35(1): 37-42.
[7] 邱海平. 新质生产力理论的科学内涵及其重大创新意义[J].财经问题研究, 2024, 46(5): 3-14.
[8] 王珏, 王荣基. 新质生产力:指标构建与时空演进[J].西安财经大学学报, 2024, 37(1): 31-47.
[9] 罗爽, 肖韵. 数字经济核心产业集聚赋能新质生产力发展:理论机制与实证检验[J].新疆社会科学, 2024, 44(2): 29-40,148.
[10] 韩文龙, 张瑞生, 赵峰. 新质生产力水平测算与中国经济增长新动能[J].数量经济技术经济研究, 2024, 41(6): 5-25.
[11] 史丹, 孙光林. 数据要素与新质生产力:基于企业全要素生产率视角[J].经济理论与经济管理, 2024, 44(4): 12-30.
[12] 李政, 廖晓东. 发展“新质生产力”的理论、历史和现实“三重”逻辑[J].政治经济学评论, 2023, 14(6): 146-159.
[13] 蒲清平. 加快形成新质生产力的着力点[J].人民论坛, 2023, 32(21): 34-37.
[14] 王琴梅, 杨军鸽. 数字新质生产力与我国农业的高质量发展研究[J].陕西师范大学学报(哲学社会科学版), 2023, 52(6): 61-72.
[15] 王金伟, 陆林, 王兆峰, 等. 新质生产力赋能旅游业高质量发展:理论内涵与科学问题[J].自然资源学报, 2024, 39(7): 1643-1663.
[16] 汪旭晖, 段怡杰. 新质生产力驱动全社会物流成本降低的机制与路径[J].中国流通经济, 2024, 38(7): 15-24.
[17] 马克思. 资本论(第1卷)[M].北京: 人民出版社, 2004.
[18] KANG K N, LEE Y S. What affects the innovation performance of small and medium-sized enterprises (SMEs) in the biotechnology industry?an empirical study on Korean biotech SMEs[J].Biotechnology Letters, 2008, 30(10): 1699-1704.
[19] 任保平. 生产力现代化转型形成新质生产力的逻辑[J].经济研究, 2024, 59(3): 12-19.
[20] 冯宗宪, 段丁允. 中国数字贸易发展水平、区域差异及分布动态演进[J].现代经济探讨, 2022, 41(12): 49-63.
[21] 向书坚, 徐应超, 李凯. 我国新型城镇化发展质量统计评价研究[J].统计研究, 2024, 41(3): 33-47.
[22] ZHANG Y, HUANG G. Evaluation of industrial development quality and analysis of influencing factors in Xi'an, China[J].Environmental Science and Pollution Research, 2022, 29(52): 79388-79412.
[23] 王新越, 郭利贞. 中国旅游经济适应性循环演化及影响机理[J].地理科学, 2024, 44(2): 297-308.
[24] WARFIELD J N .Binary matrices in system modeling[J]. IEEE Transactions on Systems, Man and Cybernetics, 1973, 3(5): 441-456.
[25] 袁红, 王焘. 政府数据开放可持续发展关键影响因素识别与作用机理分析[J].图书情报工作, 2022, 66(9): 53-65.
[26] GABUS A, FONTELA E. World problems, an invitation to further thought within the framework of DEMATEL[R].Geneva, Switzerland:Battelle Geneva Research Center,1972.
[27] 裴潇, 袁帅, 罗森. 长江经济带绿色发展与数字经济时空耦合及障碍因子研究[J].长江流域资源与环境, 2023, 32(10): 2045-2059.
[28] 王德祥. 以数字经济高质量发展加快全国统一大市场建设[J].宏观经济管理, 2023, 39(4): 22-30.
[29] 侯冠宇, 熊金武. 数字经济对经济高质量发展的影响与提升路径研究——基于我国30个省份的fsQCA分析[J].西南民族大学学报(人文社会科学版), 2023, 44(8): 115-124.
文章导航

/